Journal of Organometallic Chemistry, 263 (1984) 261-266 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

## ORGANOBORON COMPOUNDS

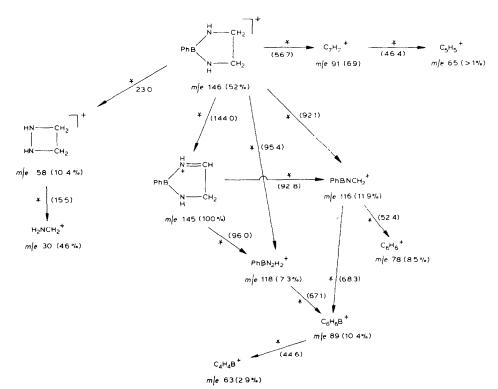
# XXVI \*. A MASS SPECTRAL STUDY OF SOME 2-PHENYL-1,3,2-DIAZABORACYCLOALKANES

## R. HARRY CRAGG, MANIJE NAZERY and ALAN F. WESTON

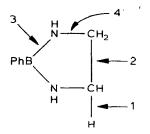
The Chemical Laboratory, University of Kent at Canterbury, Canterbury, Kent (Great Britain) (Received October 18th, 1983)

### Summary

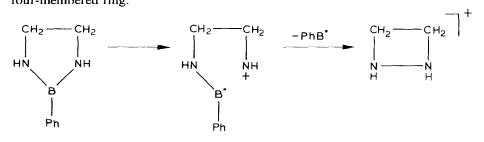
The mass spectra of the 2-phenyl-1,3,2-diazaboracycloalkanes contain peaks at m/e 91, 89, 65 and 63 which we assign to the tropylium, boratropylium, cyclopentadienyl and boracyclopentadienyl ions.


### Introduction

For some time we have been investigating the mass spectra of organometallic compounds. Our initial studies, in which we observed election-impact rearrangements resulting in the formation of hydrocarbon ions in the mass spectrum of 2-phenyl-1,3,2-dioxaborolan, attracted some interest [2–7]. We have reported the results of our mass spectral studies on 2-phenyl-1,3,2-oxazaborolans [8], 2-sub-stituted-4-methyl-1,3,2-dithiaborolans [9], 2-substituted 1,3,2-oxathiaborinans [10] and 2-phenyl-1,3,2-dioxaborinans [11]. We now present our observations concerning the mass spectra of some 2-phenyl-1,3,2-diazaboracycloalkanes. With the exception of a brief description of general features the fragmentation of 2-phenyl-1,3,2-diazaboracycloalkanes [12] and our communication [13], no detailed mass spectral information on these compounds has previously been published.


The mass spectrum of 2-phenyl-1,3,2-diazaborolan is discussed in detail and the general features of the mass spectra of 2-phenyl-1,3,2-diazaboracycloalkanes are commented on. The ions of importance are given in Table 1.

2-Phenyl-1,3,2-diazaborolan (Scheme 1) was observed to fragment via cleavage of one of four bonds.

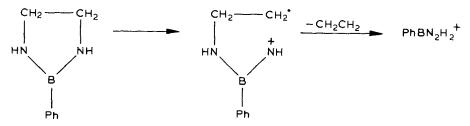

<sup>\*</sup> For part XXV see ref. 15.



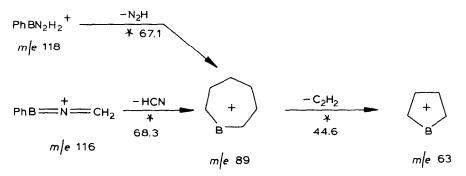
SCHEME 1. Proposed fragmentation pathway for 2-phenyl-1,3,2-diazaboracyclopentane (relative intensity as a percentage of base peak),  $\star$  indicates metastable observed.



Process 1 involves the loss of an annular carbon-hydrogen atom which allowed one of the annular nitrogen atoms to take the charge by double N=C bond formation. Process 2 resulted in the formation of the PhBNCH<sub>2</sub><sup>+</sup> ion or the tropylium ion. Process 3 appeared to involve B-N bond fission followed by formation of a four-membered ring:



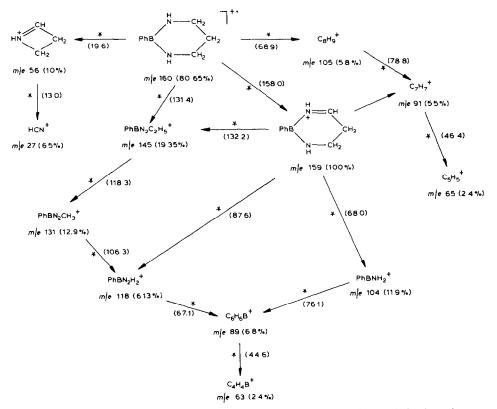

# TABLE 1


| PRINCIPAL IONS OF INTEREST IN THE MASS SPECTRA OF 2-PHENYL-1,3,2-DIAZABORA-                              |
|----------------------------------------------------------------------------------------------------------|
| CYCLOALKANES ( $m/e$ values based on <sup>11</sup> B; relative intensities as a percentage of base peak) |

| Compound        | Parent<br>m/e (%) | Relative intensity (%) |                                                    |                                                   |                                                     |                                                   |                                                  |      |
|-----------------|-------------------|------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|--------------------------------------------------|------|
|                 |                   | P-H                    | $\begin{array}{c} C_8H_9\\ (m/e\ 105) \end{array}$ | C <sub>7</sub> H <sub>7</sub><br>( <i>m/e</i> 91) | C <sub>6</sub> H <sub>6</sub> B<br>( <i>m/e</i> 89) | C <sub>5</sub> H <sub>5</sub><br>( <i>m/e</i> 65) | $\begin{array}{c} C_4H_4B\\ (m/e63) \end{array}$ | base |
|                 | 146<br>(52)       | 100                    |                                                    | 6.9                                               | 10.4                                                | >1                                                | 2.9                                              | P-H  |
|                 | 160<br>(16.7)     | 9.4                    | 1.7                                                | 5.3                                               | 10.0                                                | 1.1                                               | 3.3                                              | P-15 |
| PhB<br>Ne       | 160<br>(56.7)     | 100                    | -                                                  | 6.8                                               | 16.7                                                | >1                                                | 4.3                                              | P-H  |
|                 | 174<br>(22.7)     | 9.1                    | 2.7                                                | 6.8                                               | 22.7                                                | >1                                                | 5.9                                              | P-15 |
|                 | 220<br>(100)      | 58.3                   | -                                                  | 12.0                                              | 9.5                                                 | 3.7                                               | 2.3                                              | Р    |
|                 | 160<br>(80.65)    | 100                    | 5.8                                                | 5.5                                               | 6.8                                                 | 2.4                                               | 2.4                                              | P-H  |
| PhB N<br>Me     | 174<br>(80.6)     | 100                    | 3.7                                                | 7.4                                               | 14.2                                                | >1                                                | 3.5                                              | Р-Н  |
|                 | 188<br>(25.6)     | 11.3                   | 2.4                                                | 6.1                                               | 13.0                                                | >1                                                | 3.0                                              | P-15 |
| PhB<br>N-<br>Me | 188<br>(80.6)     | 100                    | 2.3                                                | 6.5                                               | 13.9                                                | >1                                                | 3.2                                              | P-H  |

Process 4 led to the formation of the  $PhBN_2H_2^+$  ion resulting from the elimination of ethylene.




The PhBNCH<sub>2</sub><sup>+</sup> and PhBN<sub>2</sub>H<sub>2</sub><sup>+</sup> ions fragmented further by loss of HCN or N<sub>2</sub>H respectively to give an ion m/e 89 which further fragmented by loss of acetylene to give an ion m/e 63, the process characterised by a metastable at 44.6. Precise mass determinations of these ions showed them to have the formulation C<sub>6</sub>H<sub>6</sub>B and C<sub>4</sub>H<sub>4</sub>B.



The spectrum also contained ions at m/e 91 and 65 and these two ions are identified as the tropylium and cyclopentadienyl ions by precise mass determination and an accompanying metastable at 46.4 for the m/e 91/65 process. We therefore suggest that the ions at m/e 89 and 63 are the analogous boratropylium and boracyclopentadienyl ions. The borotropylium ion has previously been reported for three compounds [5,14] and the results support our suggestion that the formation of the boratropylium and boracyclopentadienyl ions is a general process observed in the mass spectra of heterocyclic organoboranes containing at least one boron-nitrogen bond [13].

We observed that the basic fragmentation pathway for 2-phenyl-1,3,2-diazaborinan was similar to that for 2-phenyl-1,3,2-diazaborolan (Scheme 2). Carbon-carbon bond cleavage resulted in the formation of the tropylium and methyltropylium ions, loss of a hydrogen atom from an annular carbon atom adjacent to a nitrogen atom and elimination of a four-membered heterocycles from the parent after N-C bond fission were observed. In addition loss of a methyl radical followed by CH<sub>2</sub> and CH (the ions involved being identified by precise mass determination) were also observed as well as the elimination of a propyl group from the (P-H)<sup>+</sup> ion resulting in the formation of the PhBN<sub>2</sub>H<sub>2</sub><sup>+</sup> ion.

An examination of the mass spectra of the compounds listed in Table 1 enables the following comments to be made concerning the fragmentation pathways of 2-phenyl-1,3,2-diazaboracyloalkanes: (1) Loss of an annular carbon hydrogen atom



SCHEME 2. Proposed fragmentation pathway for 2-phenyl-1,3,2-diazaborinan (relative intensity as a percentage of base peak),  $\star$  indicates metastable observed.

adjacent to a nitrogen atom or loss of a carbon substituent (eg. CH<sub>3</sub>).

(2) Formation of a tropylium ion by rearrangement and phenyl ring expansion.

(3) Loss of alkyl or alkene groups to form the  $PhBN_2H_2^+$  which is an intermediate in the formation of the boratropylium ion although higher ions, including the parent ions, were observed to fragment directly to the boratropylium ion to a small extent.

### Experimental

### General procedures

All the 2-phenyl-1,3,2-diazaboracycloalkanes were prepared by established methods [12]. The mass spectra were recorded using an A.E.I. MS 902 mass spectrometer at 70 eV. The source was maintained at 170°C and the compounds were introduced as near liquids or solids using an unheated direct-insertion probe.

### Acknowledgement

We thank the SERC for support and Dr. Turner for recording the mass spectra.

## References

- 1 R.H. Cragg and J.F.J. Todd, J. Chem. Soc. Chem. Comm., (1970) 386.
- 2 I.R. McKinley and H. Weigel, J. Chem. Soc. Chem. Comm., (1970) 1022.
- 3 P.B. Brindley and R. Davies, J. Chem. Soc. Chem. Comm. (1971) 1165.
- 4 R.J. Bose and M.D. Peters, Canad. J. Chem., 49 (1971) 1176.
- 5 C. Cone, M.J.S. Dewar, R. Golden, F. Maseles and P. Rona, J. Chem. Soc. Chem. Comm., (1971) 1522.
- 6 P.B. Brindley, R. Davies, B.L. Horner and D.I. Ritchie, J. Organomet. Chem., 88 (1976) 321.
- 7 J.J. Kaminski and R.E. Lyle, Org. Mass. Spec., 13 (1978) 1978.
- 8 R.H. Cragg and A.F. Weston, J. Chem. Soc. Dalton, (1975) 93.
- 9 R.H. Cragg, J.P.N. Husband and A.F. Weston, J. Chem. Soc. Dalton, (1973) 568.
- 10 R.H. Cragg and M. Nazery, J. Chem. Soc. Dalton, (1974) 1438.
- 11 R.H. Cragg and M. Nazery, J. Organomet. Chem., 99 (1975) 41.
- 12 K. Niedenzu and C.D. Miller, Fortsch. Chem. Forsch., 15 (1970) 191.
- 13 R.H. Cragg, J.F.J. Todd, R.B. Turner and A.F. Weston, J. Chem. Soc. Chem. Comm., (1972) 206.
- 14 C.J.W. Brooks, B.S. Middleditch and G.M. Anthony, Org. Mass Spectrom., 2 (1969) 1023.
- 15 R.H. Cragg and T.J. Miller, J. Organomet. Chem., 260 (1984) 1.